
DIAMOND, SCALES AND GCH DOWN TO ℵω2

JIN DU

Abstract. Gitik and Rinot [3] proved assuming the existence of a su-
percompact that it is consistent to have a strong limit cardinal κ of
countable cofinality such that 2κ � κ�, there is a very good scale at κ,
and � fails along some reflecting stationary subset of κ�Xcofpωq. In this
paper, we force over Gitik and Rinot’s model but with a modification of
Gitik-Sharon [4] diagonal Prikry forcing to get this result for κ � ℵω2 .

1. Introduction

In this paper, cfpαq is the cofinality of α, cofpαq is the class of ordinals
with cofinality α and cofp� αq is the class of ordinals with cofinality not α.

Let V GSκ denote the presence of a very good scale at κ, BSκ the pres-
ence of a bad scale at κ, �κ the presence of a square sequence at κ, ��κ the
presence of a weak square sequence at κ, APκ the Approachability Property
at κ and SAPκ the Stationary Approachability Property at κ. SAPκ was
defined by Rinot [6] while the rest were defined by Cummings, Foreman and
Magidor [2]. Recall that for a stationary set S � κ�, �S is the assertion
that there exists a sequence xAα : α P Sy such that for every A � κ�,
tα P S : AX α � Aαu is stationary. We will also write GCHκ to mean that
2κ � κ� and SCHκ to mean if κ is strong limit, then 2κ � κ�.

Shelah [8] showed that for uncountable λ, GCHλ ñ �S for any station-
ary S � λ�X cofp� cfpλqq. Shelah [7] showed it is consistent to have GCHλ

but  �S with S � λ� X cofpcfpλqq a non-reflecting stationary set. Gitik
and Rinot [3] found a model for GCHκ � V GSκ �  �S , where κ is strong
limit and S � κ� X cofpωq reflects stationarily often. They started with
a model with GCH and κ supercompact, performed an Easton support it-
eration to add a stationary set Sα � α�ω�1 and kill all possible diamond
sequences along S�ω�1

α for each inaccessible α ¤ κ, performed another Eas-
ton support iteration to make 2α � α�ω�1 for each inaccessible α ¤ κ, and
lastly forced with a supercompact Prikry poset to get GCHκ and singular-
ize κ�n for 0 ¤ n   ω to have countable cofinality. Zeman [10], building
on work by Shelah [8], showed that when κ is singular, GCHκ �  �S for
S � κ�X cofpcfpκqq stationary and reflecting stationarily often implies  ��κ.
Below we summarize relevant results.
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For every singular cardinal κ

(1) (Shelah) �κ ñ �
�
κ ñ APκ ñ  BSκ

(2) (Cummings-Foreman-Magidor) �κ ñ V GSκ, but �
�
ℵω ÷ V GSℵω

(3) (Rinot) �
�
κ ñ SAPκ but SAPℵω ÷ �

�
ℵω

(4) (Gitik-Sharon) V GSℵω2 ÷ APℵω2
(5) (Rinot) 2κ � κ�^SAPκ ñ �S along every reflecting stationary S �

κ�

(6) (Gitik-Rinot)GCH^APℵω ÷ �S along every reflecting stationary set S �
ℵω�1

(7) (Gitik-Rinot) 2κ � κ�^V GSκ ÷ �S along every reflecting stationary set S �
κ�

In this paper, motivated by [1], [3] and [4], we obtain the following:

Theorem 1. Assuming the consistency of a supercompact, there is a model
where ℵω2 is strong limit and GCHℵω2 � V GSℵω2 �  �S �BSℵω2 , where

S � ℵω2�1 X cofpωq reflects stationarily often.

Both the failure of diamond along S and the prescence of the bad scale
imply  ��ℵω2

in this model.

In the notation of [3,§1], let Qpλ�q :� Spλ�q�KADp 9Spλ�qq, where Spλ�q is

the poset to add a new stationary subset S � λ�Xcofpωq and KADp 9Spλ�qq
is an iterated forcing to enumerate all possible diamond sequences on S and
force diamond to fail on all these sequences.

Our construction will proceed as follows. It is broadly similar to the con-
struction in Theorem 1.11 of [3], except we must modify the diagonal Prikry
forcing in the final step.

 Start with V0 |ù GCH, κ supercompact.
 Step 1a: Force with xQpα�ω�1q : α ¤ κ, α inaccessibley with Easton

support. For each α ¤ κ this adds a stationary Spαq � α�ω�1 X
cofpωq such that  �Sκ , while preserving supercompactness of κ. Let
S � Spκq. Call the resulting model V1.

 Step 1b Perform Laver preparation as in [5] to make κ indestructibly
supercompact with respect to any further κ-directed closed forcing.
Call the resulting model V �

2 .
 Step 2: Force with Addpκ, κ�ω�1q. This makes 2κ � κ�ω�1 and S

remains stationary because of the κ�ω�1-chain condition. Since κ
remains supercompact, S reflects stationarily often. Call the new
model V2.
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 Step 3: Force with a modified version of the diagonal Prikry poset
with interleaved collapses in [4]. This makes κ into ℵω2 , collapses ev-
ery κ�n to ℵω2 and makes 2ℵω2 � ℵω2�1 while preserving stationarity
of S and  �S .

Step 1a is already described in [3]. In V �
2 , the powerset function behaves

wildly below κ, but later we will use measures which concentrate on inac-
cessible α   κ such that 2α � α�ω�1. In Section 2, we perform Step 2 to
obtain V2, our main ground model for the rest of the paper. In Section 3,
we carry out Step 3 to obtain our final model and show that S remains a
stationary set that reflects stationarily often. The reason we need to mod-
ify the diagonal Prikry poset here, unlike in [3], is that in [4] the ground
model is prepared to have 2κ � κ�ω�2, which allows guiding generics for
the collapses to be constructed that make conditions with the same stem
compatible. Here, guiding generics need not exist, so we must modify the
poset to work without them. In Section 4, we show that the final model has
a very good scale and a bad scale. In Section 5, we show that �S continues
to fail in the final model.

2. Preparing the Ground Model

Working in V1, take j1 to be a κ�ω�1-supercompact embedding with criti-
cal point κ and j2 to be a κ�ω�2-supercompact embedding with critical point
κ. Regard Addpκ, κ�ω�1q as consisting of partial functions p : κ�ω�1�κÑ κ

with |p|   κ. Then a generic Ĝ for Addpκ, κ�ω�1q will add κ�ω�1-many
generic functions Fα : κÑ κ, which we may index so that either α   κ�ω�1

or α ¤ κ�ω�1.

Lemma 2. There are lifts of j1 to j�1 and j2 to j�2 both in V2 :� V �
2 rĜs so

that for every α   κ�ω�1 there is fα : κÑ κ such that j�1 fαpκq � α and for
every α ¤ κ�ω�1 there is fα : κÑ κ such that j�2 fαpκq � α.

Proof. We will prove both claims simultaneously. Let j denote either j1 or
j2 and δ � κ�ω�1 if j � j1 and δ � κ�ω�1 � 1 if j � j2. By standard
arguments, let K 1 be a generic for Addpjpκq, jpκq�ω�1q over V �

2 such that

j”Ĝ � K 1, F �
α : jpκq Ñ jpκq be the generic functions added by K 1 and

assume we have lifted j to V �
2 rK

1s so that jpFαq � F �
jpαq.

Lemma 3. There exists K generic for Addpjpκq, jpκq�ω�1q over V �
2 such

that:

 K � j”Ĝ
 If ξ   κ, α   δ and xjpαq, ξy P domppq for some p P K, then there is
p1 P K 1 such that xjpαq, ξy P dompp1q and ppxjpαq, ξyq � p1pxjpαq, ξyq

 Whenever xjpαq, κy P domppq and p P K, ppxjpαq, κyq � α

Proof. Define p P K ðñ
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 If xjpαq, κy P domppq, then ppxjpαq, κyq � α
 p|pdomppqztxjpαq, κy : α   δuq P K 1.

Since |p|   κ for every p P Ĝ, jppq � j”p. But κ R impjq. So xjpαq, κy R

dompjppqq, which implies j”Ĝ XK � j”Ĝ XK 1. Since j”Ĝ � K 1, we have

j”Ĝ � K. To show K is generic, let A � Addpjpκq, jpκ�ω�1qq be a max-
imal antichain. Let q � txjpαq, κy ÞÑ α : α   δu. Then |q| � κ�ω�1

and hence q P Addpjpκq, jpκq�ω�1q. For each p P Addpjpκq, jpκq�ω�1q, let
chppq � pp|domppqzdompqqq Y pq|domppq X dompqqq.

Let A1 � tp P Addpjpκq, jpκq�ω�1q : chppq P Au. Suppose p1, p2 P A1

are distinct. If chpp1q � chpp2q, then p1, p2 are the same outside dompqq and
have the same domain on dompqq. So p1pxjpαq, κyq � p2pxjpαq, κyq for some
α, which implies p1 K p2. If chpp1q � chpp2q, then since A is an antichain,
chpp1q K chpp2q. This incompatibility must be witnessed by some input
outside dompqq, which will also witness that p1 K p2. Therefore, A1 is an
antichain.

Now suppose p1 P Addpjpκq, jpκq�ω�1q is incompatible with every element
of A1. Define p � pp1|dompp1qzdompqqq Y q. Let r P A be compatible
with p. Then rpxjpαq, κyq � α whenever xjpαq, κy P domprq. Define r1

with dompr1q � domprq by r1pxjpαq, κyq � p1pxjpαq, κyq whenever xjpαq, κy P
domprq and r1|domprqzdompqq � r|domprqzdompqq. Then chpr1q � r P A, so
r1 P A1. Furthermore, r1 M p1 because r M p, r1 is compatible with r outside
dompqq and p1 is compatible with p outside dompqq. But this is a contra-
diction because p1 is incompatible with every element of A1. Therefore, p is
incompatible with every element of A, which contradicts maximality of A.
It follows that A1 must be a maximal antichain.

Since K 1 is generic, let p P A1 X K 1. Then chppq P A X K. It follows
that K is generic. �

Let j� be such that j�pFαqpξq � ppxjpαq, ξyq for any p P K with xjpαq, ξy P
domppq. This completes the proof of Lemma 2. �

3. The Main Forcing

Let J1, J2 be given by Lemma 2 and U, Ū their corresponding ultrafilters
on Pκpκ

�ω�1q and Pκpκ
�ω�2q respectively. From now on, we will write jŪ

in place of J2 and j in place of J1. Also, let Un be the projection of Ū on
to Pκpκ

�nq with corresponding elementary embedding jn : V2 Ñ Mn. For
convenience, we will write κx for κ X x and when x P Pκpκ

�iq, y P Pκpκ
�jq

with i   j, then x   y means x � y and otpxq   κy.

We define in V2 another forcing poset P that will collapse every κ�n to
κ and make κ into ℵω2 . Conditions will be of the form
xd, x0, c0, ..., xn�1, cn�1, An, Cn, An�1, Cn�1, ...y, where
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 d P Colpω1,  κx0q if n ¡ 0 and d P Colpω1,  κq if n � 0
 xi P Pκpκ

�iq, xi   xi�1

 ci P Colpκ�ω�2
xi ,  κxi�1q for i   n� 1 and cn�1 P Colpκ�ω�2

xn�1
,  κq

 Ai P Ui and xn�1   y whenever y P Ai
 Ci is a function with domain Ai and for every x P Ai, Cipxq P

Colpκ�ω�2
x ,  κq, i.e. rCisUi P ColMipκ�ω�2,  jipκqq

We will also require that each xi is such that κ X xi is inaccessible. Note
that this happens on a set of Ui-measure 1.

For any condition p � xd, x0, c0, ..., xn�1, cn�1, An, Cn, ...y, denote stemppq �
xd, x0, c0, ..., xn�1, cn�1y and lengthppq � n.

Given p � xdp, xp0, c
p
0, ..., x

p
n�1, c

p
n�1, A

p
n, C

p
n, ...y and

q � xdq, xq0, c
q
0, ..., x

q
m�1, c

q
n�1, A

q
n, C

q
n, ...y, define p ¤ q if

 m ¤ n
 dp ¤ dq

 xpi � xqi and cpi ¤ cqi for i   m
 xpi P A

q
i and cpi ¤ Cqi px

p
i q for m ¤ i   n

 Api � Aqi and Cpi pxq ¤ Cqi pxq for x P Api for i ¥ n

Define p ¤� q if p ¤ q ^ lengthppq � lengthpqq.

For stems h � xd, x0, c0, ..., xn�1, cn�1y and h1 � xd1, x10, c
1
0, ..., x

1
n�1, c

1
n�1y

of the same length, define h ¤ h1 if d ¤ d1, xi � x1i and ci ¤ c1i for i   n.
If p � xd, x0, c0, ..., xn�1, cn�1, An, Cn, ...y, xi P Ai for n ¤ i ¤ n � k and
xi   xi�1 for n ¤ i   n � k, let p^xxn, ..., xn�ky be the weakest extension
of p by xxn, ..., xn�ky, i.e.
xd, x0, c0, ..., xn�1, cn�1, xn, Cnpxnq, ..., xn�k, Cn�kpxn�kq, An�k�1, Cn�k�1, ...y.

P adds two new generic sequences of interest: A Prikry sequence xxn : n  
ωy, and a sequence of collapse generics xcn : n   ωy. Let κn � κXxn. Then
xκn : n   ωy singularizes κ to have countable cofinality while xcn : n   ωy
collapses all cardinals in pκ�ω�2

n , κn�1q to κ�ω�2
n for every n.

From now on let G be a generic for P and V3 � V2rGs. In V3, all cardi-
nals from κ to pκ�ωqV2 have cofinality ω and κ becomes ℵω2 . We will show
later that pκ�ω�1qV2 is the new successor of κ.

P satisfies a property characteristic of Prikry type forcings.

Lemma 4. Prikry Property For any formula ϕpv1, ..., vmq, parameters
a1, ..., am P V3 and any condition p P P, there is a condition r ¤� p such
that r , ϕp 9a1, ..., 9amq or r ,  ϕp 9a1, ..., 9amq.

Proof. For convenience, we write ϕ instead of ϕp 9a1, ..., 9amq.
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Claim 5. Let k ¥ 0. Then for every r P P, if n � lengthprq and A �
txxn, ..., xn�ky : xi P A

r
i , xj   xj�1u, then there is r1 ¤� r such that for all

~x P A, if q ¤� r1^~x and q||ϕ, then r1^~x||ϕ.

Proof. First consider the case k � 0. Let xxα : α   κ�ny enumerate Arn.
We inductively construct a sequence xqα : α   κ�ny as follows: If there is
q ¤� r^xα such that q||ϕ, choose one and call it qα. If not, let qα � r^xα.
During the construction, maintain inductively that for each i ¡ n, xrCqαi sUiy
is decreasing by strengthening the qα if necessary; we can do this because
ColMipκ�ω�2,  jipκqq is closed under κ�i-sequences. Let qx � qα, where α
is such that x � xα.

We now define r1 ¤� r as follows:

 |Colpω1,  κx0q|, |Colpκ�ω�2
xi ,  κxi�1q|   κ for i   n� 1. So there is

A1 P Un, A
1 � Arn such that on A1, x ÞÑ dqx and x ÞÑ cqxi for i   n�1

are constant. Let dr
1
, cr

1

i be those constants.
 x ÞÑ cqxn�1 P Colpκ�ω�2

xn�1
,  κxq, which can be coded as a subset of

κx. So cqxn�1 can be coded as a bounded subset of κx. By Fodor’s

Lemma, there is A2 P Un, A
2 � Arn such that x ÞÑ cqxn�1 is constant.

Let cr
1

n�1 be that constant.

 Let Ar
1

n � A1 XA2

 For x P Ar
1

n , let Cr
1

n pxq � cqxn
 For i ¡ n, we can find a lower bound rbisUi P ColMipκ�ω�2,  jipκqq

for xrCqxi sUi : x P Any, where bi has the full domain Pκpκ
�iq. Let

Bx
i � ty P Pκpκ

�iq : bipyq ¤ Cqxi pyqu and Bi � ∆xPAnB
x
i . Also let

B1
i � ∆xPAnA

qx
i . Take Ar

1

i � Ari XA
1 XA2 XBi XB

1
i.

 For i ¡ n, let Cr
1

i � bi|A
r1
i .

For all x P Ar
1

n , r1^x ¤� qx. So r1 is as desired.
Now assume the claim holds for some k. Let A � txxn, ..., xn�k�1y :

xi P Ari , xj   xj�1u and for each x P Arn, Ax � txxn�1, ..., xn�k�1y :
xx, xn�1, ..., xn�k�1y P Au. Apply the induction hypothesis to each r^x
and Ax to obtain qx ¤

� r^x such that for all ~x P Ax, if q ¤� qx
^~x and q||ϕ,

then qx
^~x||ϕ. As before, do this inductively, maintaining that xrCqxi sUiy is

decreasing (with respect to some well-ordering of Arn) for i ¡ n. We then
use the same argument as in the k � 0 case to find r1 ¤� r such that for
any x P Ar

1

n , r1^x ¤� qx. If now x^~x P A and q ¤� r1^x^~x with q||ϕ, then
q ¤� q^x ~x. So q^x ~x||ϕ and hence r1^x^~x||ϕ as desired. �

Let n � lengthppq. Using the claim, inductively construct xpk : k   ωy
a ¤�-decreasing sequence with p0 � p such that for all k ¥ 1, if ~x �
xxn, ..., xn�ky P Apkn � ... � Apkn�k with xi   xi�1 and q ¤� p^k ~x, then
q||ϕñ p^k ~x||ϕ. Let r be the weakest lower bound for xpk : 1 ¤ k   ωy.

Let Z � txxn, ..., xn�ky : p@n ¤ i   n�kqxi   xi�1, p@n ¤ i ¤ n�kqxi P A
r
i u
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and F : Z Ñ 3 be given by

F p~xq �

$'&
'%

0 r^~x , ϕ

1 r^~x ,  ϕ

2 otherwise

By standard results, there is xHi : i ¥ ny with Hi P Ui, Hi � Ari such
that for each k ¥ n, F |txxn, ..., xn�ky P Z : xi P Hiu is constant. Let r1

be obtained from r by intersecting it’s measure one sets with the Hi, i.e.
stempr1q � stemprq, Ar

1

i � Ari X Hi and Cr
1

i � Cri |A
r
i X Hi for i ¥ n. We

claim that r1 is as desired.

Suppose r1 does not decide ϕ. Then there are q0, q1 ¤ r1 such that q0 , ϕ and
q1 ,  ϕ. Without loss of generality, assume lengthpq0q � lengthpq1q � n�k,
where k ¥ 1. Then q0 ¤

� p^k xx
q0
n , ..., x

q0
n�ky. By the claim just proven,

p^k xx
q0
n , ..., x

q0
n�ky , ϕ. By the same argument, p^k xx

q1
n , ..., x

q1
n�ky ,  ϕ. But

this contradicts F |t~x : |~x| � ku being constant. So r1||ϕ. �

A similar argument establishes the following strengthening of the Prikry
Property. We omit the proof, but prove a useful corollary.

Lemma 6. If D � P is dense and p P P, there is q ¤� p and n ¥ lengthppq
such that whenever r ¤ q and lengthprq � n, r P D.

Corollary 7. pκ�ω�1qV2 remains a regular cardinal after forcing with P.

Proof. P collapses pκ�ωqV2 to κ and singularizes κ, so it is enough to show
that there is no unbounded h : τ Ñ pκ�ω�1qV2 in V3 with τ   κ.

Suppose not and let p , 9h Ñ pκ�ω�1qV2 unbounded. For each α   τ , let

Dα � tq P P : pDβqq , 9hpαq � βu and note these are dense and downwards
closed. For convenience, let p�1 � p. Inductively construct a ¤�-decreasing
sequence xpα : α   τy and xnα : n   τy as follows:

 Given pα, apply Lemma 6 to pα and Dα to obtain pα�1 ¤
� pα and

nα�1 as in the conclusion.
 If α is a limit ordinal, given pβ for all β   α, let p1 be a ¤�-lower

bound for xpβ : β   αy. Apply Lemma 6 to p1 and Dα to obtain pα
and nα as in the conclusion.

Let q ¤� pα for all α   τ . Then for any r ¤ q, if lengthprq ¥ nα, r , 9hpαq �
βα for some βα. Fix an arbitrary ¤-decreasing sequence xrn : n   ωy P V2

below q with lengthprnq ¥ n. Let fpαq � β ðñ pDnqrn , 9hpαq � β. Then
f P V2 is a well-defined unbounded function from τ to κ�ω�1. This is a
contradiction. �

Lemma 8. If xYn : n   ωy is a sequence of sets in V2 with Yn P Un for all
n, then xn P Yn for all large enough n.
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Proof. Working in V2, let D � tq P P : Xq
n � Yn for n ¥ lengthpqqu. This is

dense in P, since any p P P can be strengthened by intersecting each Xp
n with

Yn. So we can find q P GXD that will force xn P Yn for all n ¥ lengthpqq. �

Let D� �
±
iCi, where Ci � rx ÞÑ Colpκ�ω�2

x ,  κqsUi . This is exactly

ColMipκ�ω�2,  jUipκqq. Let D �
±
iCi{finite, i.e. equivalence classes of

elements of D where two elements xrC0sU0 , rC1sU1 , ...y and xrC 1
0sU0 , rC

1
1sU1 , ...y

are equivalent iff Dn@i ¡ n rCisUi � rC
1
isUi . Denote the equivalence class of

xrC0sU0 , rC1sU1 , ...y by xrC0sU0 , rC1sU1 , ...yfin. Without risk of confusion, we
may omit a finite initial segment when writing this. Define xrC0sU0 , rC1sU1 , ...yfin ¤
xrC 1

0sU0 , rC
1
1sU1 , ...yfin iff Dn@i ¡ n rCisUi ¤ rC

1
isUi . This is clearly indepen-

dent of choice of representatives.

Lemma 9. P projects to D

Proof. Let π : PÑ D be πpxd, x0, c0, ..., xn�1, cn�1, An, Cn, ...yq � xrCnsUn , rCn�1sUn�1 , ...yfin.
This is clearly order-preserving. Suppose p � xx0, d, c0, ..., xn�1, cn�1, An, Cn, ...y
and q ¤ xrCnsUn , rCn�1sUn�1 , ...yfin. Let q � xrC 1

nsUn , rC
1
n�1sUn�1 , ...yfin.

Then Dm rC 1
isUi ¤ rCisUi for all i ¥ m. Fix such an m and assume without

loss of generality m ¥ n. Then we can extend p to a condition p1 of length

m such that rCp
1

i sUi � rC
1
isUi for i ¥ m, and πpp1q � q. �

Taking projections of G, let R and GR be the generics for D and P{R over
V2 respectively. Stems and direct extensions are defined in P{R just as in P.

Lemma 10. D is κ�ω � 1-strategically closed

Proof. Consider a game of length κ�ω�1. We will inductively describe a win-
ning strategy for Player I. Let α0   κ�ω be an even ordinal and assume in-

ductively that @n@i ¥ npα   κ�n ñ xrCβi sUi : β ¤ α, β eveny is decreasingq
for every even α   α0. Let v be the least integer such that α0   κ�v.

If α0 is a successor, this means xrCβi sUi : β ¤ α0 � 2, β eveny is decreasing

for all i ¥ v. Suppose that Player II plays xrCα0�1
0 sU0 , rC

α0�1
1 sU1 , ...yfin

at stage α0 � 1. Then rCα0�1
i sUi ¤ rCα0�2

i sUi for all i ¥ w for some w.
Without loss of generality, assume w ¥ v. Then letting Player I play
xrCα0

0 sU0 , rC
α0
1 sU1 , ...yfin, where rCα0

i sUi � rCα0�2
i sUi for v ¤ i   w and

rCα0
i sUi � rCα0�1

i sUi for i ¥ w continues the game while maintaining the
induction hypothesis. Each Ci is κ�i-closed. So if α   κ�n and i ¡ n, we

may take rCαi sUi to be a lower bound for xrCβi sUi : β   αy. This maintains
the induction hypothesis.

If α0 is a limit ordinal, this means xrCβi sUi : β ¤ α0, β eveny is decreas-
ing for i ¥ v. Since Ci is κ�i-closed, we can find rCα0

i s a lower bound for

xrCβi sUi : β ¤ α0, β eveny. Let Player I play xrCα0
0 sU0 , rC

α0
1 sU1 , ...yfin at

stage α0. This condition is below the move at every earlier even stage, and
since α0 is limit, it is below the move at every earlier odd stage too. So it
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continues the game while maintaining the induction hypothesis.

At the final stage κ�ω, let Player I play xrCκ
�ω

0 sU0 , rC
κ�ω
1 sU1 , ...yfin, where

rCκ
�ω

i sUi is a lower bound for xrCαi sUi : α   κ�iy. This is a lower bound for
xCα : α   κ�ωy, where Cα � xrCα0 sU0 , rC

α
1 sU1 , ...yfin, because for any α0  

κ�ω, if u is the least integer such that α0   κ�u, then rCκ
�ω

i sUi ¤ rC
α0
i sUi

for i ¥ u. �

Lemma 11. D� preserves all V2-cardinals ¤ κ�ω�1.

Proof. D� preserves all cardinals ¤ κ by closure. Let us first show that
D� preserves κ�n for every n. It suffices to show that each Ci preserves
κ�n. This is obvious when i ¥ n because Ci is κ�i-closed, so assume
i   n. Note that Mi ( Ci is κ�ω�1-closed, and hence Ci preserves pκ�nqMi .

So if MCi
i collapses κ�n, then pκ�nqMi � κ�n. Now jn � k � ji, where

k : Mi Ñ Mn is given by kprf sUiq � jnfpjn”κ�iq. Furthermore j � ki � ji,
where ki : Mi Ñ M is given by kiprf sUiq � jfpj”κ�iq and the same
when i is replaced by n. For each α   κ�ω�1, kiprx ÞÑ fαpκxqsUiq �
rx ÞÑ jfαpjpκq X xqsUipj”κ

�iq � jfαpjpκq X j”κ�iq � jfαpκq � α. So
critpkiq ¥ κ�ω�1. By the same argument, critpknq ¥ κ�ω�1. We then must
also have critpkq ¥ κ�ω�1. So, if pκ�nqMi � κ�n, then letting γ :� pκ�nqMi ,
Mi ( γ is a cardinal. But Mn ( γ is not a cardinal because Mn computes
cardinals ¤ κ�n correctly. Let h : γ Ñ κ�m be a bijection in Mn for some
κ�m   γ. Then k�1phq is a bijection from γ to κ�m in Mi, which is a
contradiction.

Since the limit of a sequence of cardinals is a cardinal, D� preserves κ�ω

as well.

For each n, critpjnq � κ and Cn has size |jnpκq|
V2 ¤ κ|Pκpκ

�nq| � κκ
�n
¤

p2κqκ
�n
� 2κ

�n
� κ�ω�1. So any antichain has size   κ�ω�2, and D�

preserves cardinals ¥ κ�ω�2. Since D� is countably closed, if D� collapses
κ�ω�1, it must collapse it to some cardinal   κ�ω. But then κ�ω would
also be collapsed, which we know is not the case. So D� must preserve
κ�ω�1. �

Note that since D� preserves κ�ω�1 and projects to D, κ�ω�1 remains
cardinal in V2rRs.

Lemma 12. P{R � tp P P : πppq P Ru has the κ�ω�1-chain condition.

Proof. In this proof, xn and cn are the relevant terms in the generic se-
quences xxn : n   ωy and xcn : n   ωy. Towards a contradiction, let
A � tpγ : γ   κ�ω�1u � P{R be an antichain of size κ�ω�1. By thinning
out A, we may assume every pγ has the same length n̄. For any γ   κ�ω�1,
A
pγ
n has measure 1. Also, tp P P{R : @ large enough npApn � A

pγ
n ^ @x P

ApnpC
p
npxq ¤ C

pγ
n pxqqqu is dense. So we may find p P GR such that for all
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large enough n, Apn � A
pγ
n and Cpnpxq ¤ C

pγ
n pxq for every x P Apn and in

particular for x � xn. Let nγ ¡ n̄ be such that xn P A
pγ
n and cn � C

pγ
n pxnq

for all n ¥ nγ . Let I � κ�ω�1 be an unbounded set in V2rRsrGRs such that
@γ P I, nγ � N for some N .

For γ P I, extend each pγ to qγ with lengthpqγq � N while keeping qγ |rN,ωq �
pγ |rN,ωq. Since |I| � pκ�ω�1qV2 while there are only pκ�ωqV2-many stems,
and V2rRsrGRs ( |pκ�ω�1qV2 | � κ� ^ |pκ�ωqV2 | � κ, there are distinct
γ1, γ2 P I such that q1 :� qγ1 and q2 :� qγ2 have the same stem. Let
h � stempq1q � stempq2q.

Working in V2rRs, let Dn � ty : C
pγ1
n pyq M C

pγ2
n pyqu. Then xn P Dn, as

witnessed by cn. By genericity, Dn must be measure 1 for large enough
n. Let N 1 ¥ N be such that Dn P Un for n ¥ N 1. For n ¥ N 1, let
Cn be a common extension of Cq1n , C

q2
n defined on Aq1n X Aq2n X Dn. Then

q :� hˆxxn, C
q1
n pxnq Y Cq2n pxnq : N ¤ n   N 1yˆxAq1n X Aq2n XDn, Cn : N 1 ¤

n   ωy is a common extension. So qγ1 and qγ2 are compatible, which is a
contradiction. �

We now show the first two properties of V3 promised in Theorem 1.

Lemma 13. V3 ( ℵω2 is strong limit, GCHℵω2 .

Proof. We start with V2 ( κ strong limit, 2κ
�ω
� κ�ω�1. By Lemmas 8 and

9, D adds no new subsets of κ�ω while preserving all cardinals ¤ κ�ω�1. So

V2rRs ( κ strong limit, 2κ
�ω
� κ�ω�1.

To show ℵω2 is strong limit, since xκn : n   ωy is cofinal in ℵω2 , it suffices
to show that V3 ( 2κn   ℵω2 . P{R adds generics for Colpκ�ω�2

n ,  κn�1q; so

by standard results V3 ( 2κ
�ω�2
n � κn�1. Hence V3 ( 2κn ¤ κn�1   ℵω2 .

To show GCHℵω2 , we use the following standard result on powersets in
generic extensions.

Fact 14. Let P P V have size λ� and the λ�-chain condition and G be
generic for P over V . Suppose λ is collapsed to κ while pλ�qV � pκ�qV rGs.
Then V rGs ( 2κ ¤ ppλ�qλqV .

For conditions p � xd, x0, c0, ..., xn�1, cn�1, An, Cn, ...y P P{R, there are
¤ κ-many values for d, ¤ κ�i-many values for xi, ¤ κ-many values for ci,
¤ κ�ω�1-many values for Ai and ¤ κ�ω�1-many values for Ci. So P{R
has size κ�ω�1. By the fact just proved, V3 ( 2κ ¤ ppκ�ω�1qκ

�ω
qV2rRs �

pκ�ω�1qV2rRs. Hence V3 ( 2ℵω2 � ℵω2�1. �

Lemma 15. S is stationary and reflects stationarily often in V3

Proof. First note that D preserves stationarity of S because it is κ�ω � 1-
strategically closed, and by a standard result, ω � 1-strategically closed



DIAMOND, SCALES AND GCH DOWN TO ℵω2 11

forcings preserve stationarity of sets with points of countable cofinality.

By Lemma 12, because of the chain condition, passing from V D
2 to V3 pre-

serves stationary subsets of κ�ω�1. So S remains stationary in V3.

Let T P V2 be the set of reflection points of S. We first show that T is station-
ary in V2. Suppose not and let C � κ�ω�1 be a club in V2 disjoint from T .
Then S does not reflect at any point of C. By elementarity, jpSq does not re-
flect at any point of jpCq. Now C� � tx P Pκpκ

�ω�1q : supx P Cu is a club,
hence C� P U and @Ux supx P C. Since ρ � sup j”κ�ω�1 � rx ÞÑ supxsU ,
by Los’ Theorem we have ρ P jpCq. So jpSq X ρ cannot be stationary. On
the other hand, let B � ρ be a club. Then B1 � tα   κ : jpαq P Bu is a
  κ-club. Let B̄1 � B1 Y tα   κ : α is a limit point of B1u. This is a club,
so let δ P B̄1 X S. Since S � cofpωq, δ P B1 X S. Then jpδq P B X jpSq,
showing that jpSq X ρ is stationary. This is a contradiction. Therefore T
must be stationary in V2.

Note that κ remains supercompact in V D�
2 because Addpκ, κ�ω�1q � D� is

κ-directed closed and S remains stationary in V D�
2 because D� is ω � 1

strategically closed and S � cofpωq. Since the previous paragraph only
used the supercompactness of κ and the fact that S is stationary in V2,
T �

9�tα : S X α stationary in V D�
2 u must also be stationary. But reflection

at α is downwards absolute, hence T � � T . So T must be stationary in
V2rRs as well. Since P{R has the κ�ω�1-chain condition, T is stationary in
V3.

It remains to show that stationarily many points of T remain reflection
points of S in V3. It suffices to do this for all reflection points of any pre-
scribed uncountable cofinality; but we will do it for many such cofinalties.
Passing from V2 to V2rRs preserves all reflection points because D is κ�ω�1-
strategically closed, and so no new bounded subsets of κ are added. Let α
be a reflection point in V2rRs and τ � cfpαq.

Lemma 16. If τ P pκn, κ
�ω�2
n q for some n, τ is regular in V3 and V3 |ù A �

ON, otpAq � τ , then DB P V2 such that B � A is unbounded. In particular,
if cfV3pτq P pκn, κ

�ω�2
n q, then cfV3pτq � cfV2pτq.

Proof. Let p P P be such that p , 9h : τ Ñ A is increasing and cofinal.
Without loss of generality lengthppq ¡ n. For each β   τ , let Dβ �

tq : Dγ P A q , 9hpβq � γu. By Lemma 6, we can find pβ ¤
� p and

nβ such that @q ¤ pβ with lengthpqq � nβ, q P Dβ. Using the notation

pβ � xdβ, xβ0 , c
β
0 , ..., x

β
m�1, c

β
m�1, A

β
m, C

β
m, ...y, we may assume we have con-

structed the pβ inductively so that Aβi � Aγi for β ¡ γ and xrCβi sUi : i   τy

is decreasing; we can do this because Ci is κ�ω�2
Mi

-closed, which is larger than

τ . Our goal will be to find an unbounded I � τ and p1 P P a lower bound
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for xpβ : β P Iy. We will do this coordinate by coordinate. This is already
the case with the xi coordinates, so we need only focus on the d coordinate
and the ci coordinates.

Since ci P Colpκ�ω�2
i ,  κi�1q, which is κ�ω�2

i closed, whenever τ   κ�ω�2
i ,

i.e. n ¤ i, we can take the cβi decreasing and then find a lower bound.
Now consider those i   n. For each pd, c0, ...cn�1q P Colpω1,  κ0q �±
i n Colpκ�ω�2

i ,  κi�1q, let Apd,c0,...,cn�1q � tβ   τ : dβ � d,@ipcβi � ciqu.

This is a partition of τ into |Colpω1,  κ0q �
±
i n Colpκ�ω�2

i ,  κxi�1q| �
κn   τ pieces. Since τ is regular, there is some pd, c0, ..., cn�1q such that

I � Apd,c0,...,cn�1q is unbounded. xdβ : β P Iy and xcβi : β P Iy are constant
sequences, so a lower bound is just those constants.

Now let p1 be a lower bound for xpβ : β P Iy using again the closure of
the Ci. By further shrinking I, we may assume that nβ � k for some con-
stant k on I. Let q ¤ p1 with lengthpqq � k. Then q decides the value of
9hpβq for every β P I. Letting B � tγ : Dβ P Ipq , 9hpβq � γqu, we get the
desired unbounded subset in V2. �

Suppose τ � cfpαq is as in the lemma just proved. If α is no longer a
reflection point in V3, let xαi : i   τy enumerate a club with suprenum α in
V2rRs and C � α be a club in V3 such that SXαXC � H. Let A � ti   τ :
αi P Cu. Then A is unbounded; so by the claim there is unbounded A1 � A
in V2 � V2rRs. But then letting C 1 be the closure of tαi : i P A1u gives a
club in V2rRs disjoint from S X α, which is a contradiction. So α remains a
reflection point in V3. �

4. A Very Good Scale and a Bad Scale

We will now show that there is a very good scale and a bad scale in V3,
as promised in Theorem 1. Throughout this section, we will write f ¤� g
for scales f and g to mean that g eventually dominates f .

Motivated by arguments in [1], we first prove a Bounding Lemma.

Lemma 17. Bounding Lemma
Let xηpnq : n   ωy be a sequence of ordinals such that n ¤ ηpnq ¤ ω. Then

for any t P
±
n κ

�ηpnq�1
n , there is a sequence xBn : n   ωy P V2 with Bn an

ordinal-valued function on Pκpκ
�nq such that on a Un-measure one set of x,

Bnpxq   κ
�ηpnq�1
x and for all large enough n, tpnq   Bnpxnq.

Proof. Let p , 9t P
±
n 9κn

�ηpnq�1. For n ¥ m :� lengthppq and conditions q

of length ¡ n, write q|| 9tpnq to mean q , 9tpnq � β for some β   κxqn . Our
goal will be to define Bn and a condition pn with stemppnq � stemppq such
that pn , 9tpnq   Bnp 9xnq. We will first define for each x P Pκpκ

�nq a suitable
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upper part ux � xx, cxyˆxA
n�1
x , Cn�1

x , ...y. We may assume xpm�1   x since
this happens for Um-almost all x whenever n ¥ m.

Fix x. Let Sx be the set of all stems h of length n extending stemppq such
that hˆxx,Cpnpxqy is also a stem. Since for every k ¤ n and y P Pκpκ

�kq,
|κ�kXy| � κ�ky , then for Un-almost all x we have |ty : y   xu| ¤ |Pκxpκ

�nX

xq| ¤ |κ�n X x| κx � pκ�nx q κx � κ�nx . Then |Sx| ¤ κ�nx . So let xxhγ , βγy :

γ   κ
�ηpnq�1
x y be an enumeration of txh, βy : h P Sx, β   κ

�ηpnq�1
x u. Apply-

ing the Prikry Property to the condition hγˆxx,CpnpxqyˆxA
p
n�1, C

p
n�1, ...y and

the sentence 9tpnq � βγ , we get a condition pγ � h1γˆxx, c
pγ
n yˆxA

pγ
n�1, C

pγ
n�1, ...y

with h1γ ¤
� hγ , c

pγ
n ¤ Cpnpxq and pγ || 9tpnq � βγ . Since Colpκ�ω�2

x ,  κq is

κ�ω�2
x -closed, choose the pγ inductively so that xc

pγ
n : γ   κ

�ηpnq�1
x y is de-

creasing and let cx be a lower bound. Inductively, define for k ¥ n � 1,
Axk �

�
γ A

pγ
k . Since Colpκ�ω�2

y ,  κq is κ�ω�2
y -closed, we can take the

xC
pγ
i pyq : γ   κ

�ηpnq�1
x y to be decreasing for each y P Axk. Define Cxk ��

γ C
pγ
k and ux � xx, cxyˆxA

x
n�1, C

x
n�1, ...y.

With x now allowed to vary, let pn � p|nˆxAp
n

n , C
pn
n , ...y, where

 p|n � xdp0, x
p
0, c

p
0, ..., x

p
m�1, c

p
m�1, A

p
m, C

p
m, ..., A

p
n�1, C

p
n�1y

 Ap
n

n � Apn
 Cp

n

n pxq � cx
 Ap

n

k � ∆xPPκpκ�nqA
k
x for k ¡ n

 Cp
n

k pyq �
�
x y C

x
k pyq on a measure 1 subset of Ap

n

k

Define Bnpxq � suptβ : Dqplengthpqq � n � 1, q|rn, ωq � ux, q , 9tpnq �
βqu � 1. There are ¤ κ�nx choices for q in the definition of Bnpxq. Since the

β corresponding to each q is below κ
�ηpnq�1
x , Bnpxq   κ

�ηpnq�1
x . It remains

to show that pn , 9tpnq   Bnp 9xnq for all large enough n. Let q ¤ pn have
length n�1. Then q is of the form hˆxx, cyˆq|rn�1, ωq. By the construction

above, there is pγ ¤
� hˆxx, c

hγ
n yˆxA

p
n�1, C

p
n�1, ...y such that pγ , 9tpnq � β for

some β. Since pγ |nˆux ¤ pγ , pγ |nˆux , 9tpnq � β. It follows that β   Bnpxq.

Let h1 � pγ |n ¤
� h and q1 � h1ˆxx, cyˆq|rn� 1, ωq. Then q1 ¤ q because c ¤

cx and stempq1q ¤� stemppγq. We need to show q1|rn� 1, ωq ¤ pγ |rn� 1, ωq

as well. Let k ¥ n � 1. Then Aq
1

k � Ap
n

k � tz : z P
�
y z A

k
yu. If z P Aq

1

k ,

then x   z, so z P Akx � A
pγ
k . Hence Aq

1

k � A
pγ
k . If z P Aq

1

k , then z P A
pγ
k and

Cq
1

k pzq ¤ Cp
n

k pzq �
�
y z C

y
k pzq. But x   z, so Cq

1

k pzq ¤ Cxk pzq ¤ C
pγ
k pzq,

which shows Cq
1

k � C
pγ
k . Therefore, q1 ¤ pγ , which gives q1 , 9tpnq � β and

q1 , 9tpnq   Bnp 9xnq. By density of the q1 below pn, pn , 9tpnq   Bnp 9xnq.

Finally, observe that we could have constructed the pn inductively so that
xpn : n   ωy is decreasing. Assume we have done so and let p� be a lower
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bound. Then p� , 9tpnq   Bnp 9xnq for all n ¥ m. Since the argument works
densely below p, we have the Bounding Lemma. �

Theorem 18. There is a very good scale xtα : α   κ�y P V3 for κ.

Proof. Recall that κn :� κ X xn and in Section 2, we found fα : κ Ñ κ
for α   κ�ω�1 such that jfαpκq � α. For each α   κ�, define in V3,
tαpnq � fαpκnq if fαpκnq   κ�ω�1

n and 0 otherwise. The proof that this is a
very good scale is as in [4]. �

Theorem 19. There is a bad scale xgβ : β   κ�y P V3 for κ.

Proof. Shelah [7] showed every scale above a supercompact cardinal is bad.
We include the proof of the following more specific result for completeness.

Lemma 20. Let V ( κ supercompact and xhβ : β   κ�ω�1y be a scale in±
n κ

�n�1. Then there is inaccessible δ   κ such that there are stationarily
many bad points of cofinality δ�ω�1.

Proof. Let us write ~h for xhβ : β   κ�ω�1y. Towards a contradiction, as-
sume no such δ exists. Then for every inaccessible δ   κ, there is a club
Cδ � κ�ω�1 such that every β P Cδ with cfpβq � δ�ω�1 is a good point for
~h. Let C �

�
δ Cδ. This is still a club.

Suspending the previous definitions of V,M and U for the rest of this lemma,
let j : V Ñ M be a κ�ω�1-supercompact embedding with corresponding
normal measure U and ρ � sup j”pκ�ω�1q. Then ρ � rx ÞÑ supxsU and
jpCq � rx ÞÑ CsU . Since supx P C for U -almost all (in fact for club many)
x, M ( ρ P jpCq. Now V ( @β@δ inacc pβ P C ^ cfpβq � δ�ω�1 ñ

β is a good point for ~h. So M ( @β@δ inacc pβ P jpCq ^ cfpβq � δ�ω�1 ñ

β is a good point for jp~hq. Since κ is inaccessible in M and cfpρq � κ�ω�1,

ρ is a good point for jp~hq.

Working in M , define fpnq � suppj”κ�n�1q. We will show f is an eub
for xjphqβ : β   ρy. Given β   ρ, let γ   κ�ω�1 be such that jpγq ¡
β. Then jphqβ  

� jphqjpγq � jphγq. Since hγpnq   κ�n�1, jphγqpnq  

sup j”pκ�n�1q � fpnq, we have jphqβ  
� f . So f is an upper bound.

Now let h  � f , i.e. hpnq   suppj”κ�n�1q for large enough n. Then
for n large enough, there are γn   κ�n�1 such that hpnq   jpγnq. Let

h̄pnq � γn. Since ~h is a scale, we can find β so that hβ ¡
� h̄. Then

jphβq � jphqjpβq ¡
� jph̄q ¡� h. Hence f is exact. But cfpfpnqq � κ�n�1,

which is strictly increasing. Therefore, ρ is a bad point for jp~hq. This is a
contradiction. �

Working in V2, since κ is supercompact, there is a bad scale xGβ : β  
κ�ω�1y on

±
n κ

�n�1 with stationarily many bad points. For each n and each
η   κ�n�1, let F ηn be a representative for η in UltpV2, Unq, i.e. rF ηn sUn � η
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and for Un-almost all x, F ηn pxq   κ�n�1. Note that UltpV2, Unq computes
κ�n�1 correctly because it is closed under κ�n sequences.

In V3, define xgβ : β   κ�y by gβpnq � F
Gβpnq
n pxnq, recalling that xxn :

n   ωy is the Prikry sequence added by P. Note that this is well-defined for

n large enough by Lemma 8 because xdompF
Gβpnq
n q : n   ωy is a sequence

of measure 1 sets.

Subclaim 21. If α   β, then gαpnq   gβpnq for large enough n.

Proof. Since xGβ : β   κ�ω�1y is a scale, Gαpnq   Gβpnq for large enough

n. So for large enough n, F
Gαpnq
n pxq   F

Gβpnq
n pxq for Un-almost all x. It

follows that gαpnq � F
Gαpnq
n pxnq   F

Gβpnq
n pxnq � gβpnq for large enough

n. �

Subclaim 22. xgβ : β   κ�y is a scale in
±
n κ

�n�1
n

Proof. We need to show that for any h P
±
n κ

�n�1
n in V3, there is β such

that hpnq   gβpnq for large enough n. For this, we use the Bounding Lemma
with ηpnq � n to get xBn : n P ωy P V2 such that rBnsUn   κ�n�1 and for
large enough n, hpnq   Bnpxnq. Since xGβ : β   κ�ω�1y is cofinal in±
n κ

�n�1, let β be such that rBnsUn   Gβpnq for large enough n. Then

rBnsUn   rF
Gβpnq
n sUn , i.e. Bnpxq   F

Gβpnq
n pxq for Un-almost all x. It follows

that hpnq   Bnpxnq   F
Gβpnq
n pxnq � gβpnq for large enough n. �

Lemma 23. Let α be a bad point of xGβ : β   κ�ω�1y with cfpαq P
pκn, κ

�ω�2
n q for some n. Then α is a bad point of xgβ : β   κ�y.

Proof. We will show the contrapositive. By Lemma 16, we know that for
any such α, cfV3pαq � cfV2pαq so that in particular, ω   cfV2pαq   κ. Let
unbounded A � α and m witness that α is a good point of xgβ : β   κ�y,
i.e. xgβpnq : β P Ay is strictly increasing for any fixed n ¥ m. By Lemma
16, A has an unbounded subset in V2; so we may assume that A P V2.

Let p � xx0, c0, ..., xk�1, ck�1, Ak, Ck, ...y be such that
p , @n ¥ m@β   β1 P Ap 9gβpnq   9gβ1pnqq. Without loss of generality, assume

k ¥ m. Then in particular, p , @β   β1 P ApF
Gβpkq
k p 9xkq   F

Gβ1 pkq

k p 9xkqq.

Let B � Ak X tx : @β   β1 P ApF
Gβpkq
k pxq   F

Gβ1 pkq

k pxqqu. We claim that

B P Uk. If not, B1 � Ak X tx :  @β   β1 P ApF
Gβpkq
k pxq   F

Gβ1 pkq

k pxqqu. We
can then take q ¤ p of the form q � xx0, c0, ..., xk�1, ck�1, B

1, Cqk , ...y. Then
q , 9xk P B

1, which is a contradiction because p , 9xk R B
1.

We now have @β   β1 P ApF
Gβpkq
k pxq   F

Gβ1 pkq

k pxqq for Uk-almost all x.
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But rF βk sUk � β So @β   β1 P ApGβpkq   Gβ1pkqq. Since this argument
works for any k ¥ m, α is a good point of xGβ : β   κ�ω�1y. �

Let B P V2 be the set of bad points of xGβ : β   κ�ω�1y. This is
stationary. The goal is to show that if B1 P V3 is the set of bad points of
xgβ : β   κ�y, then this is stationary as well.

Recall from Lemma 11 that D� preserves κ�ω�1 and every κ�n�1. xGβ :

β   κ�ω�1y remains a scale in V D�
2 because being increasing under the even-

tual domination ordering is absolute, and it remains cofinal because D� is
κ-closed hence adds no new ω-sequences. Let B̄ be its set of bad points.
Since κ remains supercompact, by Lemma 20 there is inaccessible δ such
that B̄ X cofpδ�ω�1q is stationary. But B̄ � B because being a bad point is

downwards absolute. So B X cofpδ�ω�1q P V D�
2 is stationary.

Since stationarity is downwards absolute, B X cofpδ�ω�1q is stationary in
V2rRs. Since P{R has the κ�ω�1-chain condition, B X cofpδ�ω�1q remains
stationary in V3. Assume we have forced below a condition making κ0 � δ.
Then B1 � B X cofpδ�ω�1q by Lemma 23. So B1 is stationary. �

5. The Failure of Diamond

We now prove that �S fails in V3, as promised in Theorem 1.

Theorem 24. V3 |ù  �S

The following lemma is a standard result due to Kunen.

Lemma 25. Let τ be a cardinal, S � τ� be stationary and V |ù  �S. Then
for any generic G of a τ�-cc forcing P, V rGs |ù  �S.

It follows that passing from V1 to V �
2 , V �

2 to V2 and V2rRs to V3 all
preserve  �S . It remains to show that passing from V2 to V2rRs preserves
 �S .

Lemma 26. M̄ does not have a �S sequence.

Proof. Suppose M̄ ( xAα : α P Sy is a �S sequence. Then xAα : α P
Sy P V2. Since M̄ is closed under κ�ω�2-sequences, given A � κ�ω�1 in V2,
A P M̄ . So tα P S : AX α � Aαu is stationary in M̄ . But every club subset
of κ�ω�1 in V2 is in M̄ . So tα P S : AX α � Aαu is stationary in V2, giving
us a �S sequence in V2, a contradiction. �

Lemma 27. Let Q be a κ�ω�2-closed forcing over M̄ . Then Q does not add
�S with respect to V2 sets, i.e. there is no xSα : α P Sy such that for every
A � κ�ω�1 in V2, tα : AX α � Sαu is stationary.

Proof. Note that subsets of κ�ω�1 in M̄ are the same as subsets of κ�ω�1

in V2.
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Suppose for contradiction S � xSα : α P Sy is a �S sequence with respect to

V2 sets in M̄Q and let p P Q be such that p , 9S is a �S sequence with respect to V2 sets.
Since Q is κ�ω�2-distributive, each Sα P M̄ is such that for any A P M̄ ,
tα P S : AX α � Sαu is stationary. We will show that S P M̄ . This will be
a contradiction because M̄ (  �S .

Inductively define xpα : α P Sy decreasing so that pα , 9Spαq � Sα. Since
|S|   κ�ω�2, there is a lower bound q. Then S � tpα,Aq : α P S, q ,
9Spαq � Au P M̄ . �

Let C̄ � rx ÞÑ Colpκ�ω�2
x ,  κqsŪ � ColM̄ pκ�ω�2,  jŪ pκqq. By Lemma

27, M̄ C̄ does not have a �S sequence. Let k̄n : Mn Ñ M̄ be given by
k̄nprf sUnq � jŪfpjŪ”κ�nq. Then jŪ � k̄n � jn. By the argument from
Lemma 11, critpk̄nq ¡ κ�ω�1. Since S � κ�ω�1, k̄npSq � S.

Lemma 28. MCn
n does not have a �S sequence.

Proof. Suppose xAα : α P Sy is a �S sequence in MCn
n and 9h is a Cn name

over Mn for the function hpαq � Aα. Let p P Cn be such that p , 9h is a �S
sequence. Then k̄nppq , k̄np 9hq is a �S sequence. But this is a contradiction

because M̄ C̄ does not have a �S sequence, and we could have forced below
k̄nppq. �

Lemma 29. Let Gn be generic for Cn over Mn. Then there is Gpnq generic
for C̄ over M̄ and k�n : MnrGns Ñ M̄ rGpnqs extending k̄n : Mn Ñ M̄ such
that k�npτGnq � k̄npτqGpnq for every Cn-name τ .

Proof. It is enough to find p P C̄ such that p ¤ knpqq for every q P Gn. This
is possible because |Gn| ¤ |Cn| � κ�ω�1 and C̄ is κ�ω�2-closed and because
critpk̄nq ¡ κ�ω�1. �

From now on, we use
±
nGn as our generic for D� over V2 and H :�±

nG
pnq as our generic for

±
n C̄ over M̄ .

Lemma 30. V D�
2 does not have a �S sequence with respect to V2 sets.

Proof. For any q P
±
nCn, q � xqn : n   ωy with qn P Cn. Let q̄n � k̄npqnq P

C̄ and q̄ � xq̄n : n   ωy P
±
n C̄.

Let xAα : α P Sy be a �S sequence with respect to V2 in V D�
2 , hpαq � Aα

and suppose p P
±
nCn, p ( 9h is a �S sequence with respect to V2 sets.

Without loss of generality, assume pn P Gn. Then p̄ P H.

Let 9A�
α � txβ̌, q̄y : q , β P 9Aαu a

±
n C̄-name. Then whenever q ,

β P 9Aα, q̄ , β P 9A�
α. Let 9h� be a

±
n C̄-name for the sequence α ÞÑ

A�
α, where A�

α � p 9A�
αqH . We will show that M̄ ( 1±

n C̄ , “ 9h� is a �S
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sequence with respect to V2 sets2, contradicting Lemma 27.

Let A � κ�ω�1 be a set in V2. Then there is stationary T � S such that
for all α P T there is q ¤ p still in

±
nGn with q , A X α � 9Aα. Given

any β P A X α, strengthening q if necessary, we may assume q , β P 9Aα,
hence q̄ , β P 9A�

α. Since q̄ P H, A X α � A�
α. On the other hand sup-

pose β R A X α. This is absolute across all models containing A, so we
may take q ¤ p still in

±
nGn so that q , β R 9Aα. We want to show

that q̄ , β R 9A�
α. If not, then there is a generic filter H 1 containing q̄ such

that β P p 9A�
αqH 1 � tβ : Dxβ̌, r̄y P 9A�

α, r̄ P H
1u, so there is r̄ P H 1 such that

xβ̌, r̄y P 9A�
α. By definition of 9A�

α, r , β P 9Aα. In particular, q K r. But q̄ M r̄
because they belong to the same filter, which means @npk̄npqnq M k̄nprnqq.
By elementarity, @npqn M rnq, so q M r. This is a contradiction. It follows
that β R A�

α.

Therefore, for every α P T , M̄ rHs ( A X α � A�
α. But T remains sta-

tionary in M̄ rHs because of the chain condition. �

We are now ready to finish the proof of Theorem 24. If V2rRs had a �S se-

quence, this sequence would exist in V D�
2 and guess every V2rRs-subset (and

in particular every V2-subset) of κ�ω�1 stationarily often. This contradicts
Lemma 30.

We conclude with two problems that remain open:

(1) Can we get Theorem 1 for ℵω? Can we even get V GSℵω �  �
�
ℵω?

The same construction but with only finitely many cardinals between
successive terms κn and κn�1 in the Prikry sequence would not work
because κ�ω�1 would no longer be a cardinal in V D

2 .
(2) Shelah asked whether it is possible to get GCHκ � �S , where S �

κ� X cofpcfpκqq. The larger S is, the more difficult it is to get  �S ;
so this would be the optimum result in the direction of enlarging S.
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